发表于: 2019-09-02 10:23 点击:


报告嘉宾:王山峰教授(中山大学 )

时 间:2019年8月20日(周二)上午10:00-11:00

地 点:ju11net九洲娱乐 B2-537会议室


王山峰是中山大学材料科学与工程学院教授、博导。在2018年5月以“百人计划”杰出青年人才引进之前,任美国田纳西大学材料科学与工程系和生物医学工程研究所副教授(终身)。王山峰教授于2003年12月在美国俄亥俄州阿克伦大学(University of Akron, Ohio)高分子科学系获得博士学位,2004-2007年在梅佑医学中心(Mayo Clinic, Minnesota)美国医学院院士Michael J. Yaszemski教授领导的生物材料与组织工程研究组,开展骨修复和神经修复生物材料的博士后研究工作。2008年5月被华东理工大学聘任为客座教授;2010年至2013年,任橡树岭国家实验室兼职教授;2017年8月至2018年5月,在哈佛医学院丹纳法博癌症研究所访问。王山峰教授已在Biomaterials, Biomacromolecules, 和Advanced Functional Materials等学术期刊上发表80余篇研究论文和综述(共被引3800多篇次,单篇被引超过50次的25篇,H-index为35)。获授权国际发明专利3项。在国际会议上做超过160次报告,并在会议和研究机构做过近百次邀请报告。参加、领导编辑杂志特刊5次。


This seminar highlights our recent efforts in understanding how to regulate cell behaviors and functions through controllable substrate characteristics, aiming to facilitate diverse tissue engineering applications such as bone, nerve, and cardiovascular repair and regeneration. The biodegradable materials developed and studied in our laboratory include polymers, nanocomposites, and inorganic materials. Used as model systems, photo-crosslinkable and biodegradable poly(e-caprolactone) acrylates (PCLAs), poly(ethylene glycol) diacrylates (PEGDAs), and photo-polymerizable poly(L-lysine) (PLL) and poly(ethylene glycol) (PEG) monoacrylates synthesized via facile methods have been photo-crosslinked into networks with tunable characteristics for regulating cell fate. By varying crosslinking density and crystallinity simultaneously, the mechanical properties of PCLA networks can be controlled efficiently. We have also modified PCLA networks and PEGDA-based hydrogels by tethering PEG or PLL chains to regulate surface chemistry and biocompatibility. Bulk and surface characteristics such as stiffness, morphology, hydrophilicity, and the capability of adsorbing serum proteins have been examined and correlated with the behaviors and functions of various cell types. Using these polymers, substrates with microfabricated or self-assembled surface patterns such as concentric or parallel microgrooves, micropillar arrays, nanofiber arrays, and honeycomb structures have also been prepared to explore the effects of these biomimetic surface morphologies on cell adhesion, spreading, proliferation, motility/migration, alignment, differentiation, and integrin/gene/protein expression. These research projects not only supply novel biomaterials and medical strategies for tissue engineering applications, but also offer excellent model systems to investigate fundamental correlation between surface characteristics and cell functions. Both aspects will help emphasize the role of materials science in fostering biomedical sciences.




地点 ju11net九洲娱乐 B2-537会议室 时间 上午10:00-11:00
时分 08-20 星期 星期二

深圳市南山区学苑大道1066号B2栋 邮编:518071 电话:0755-86930097

粤ICP备11018045号-7 版权所有:ju11net九洲娱乐_九洲娱乐官网ju11net